The Bionomic Equilibrium Model for Balancing Forest Conservation and Economic Growth: Empirical Evidence from Indonesia
Abstract
Abstract: The objective of this study is to balance forest conservation with economic growth while accounting for the rate of deforestation. The methodology employed in this research utilizes a mathematical modeling approach, specifically adopting the logistic model to represent forest growth rates. In addition, numerical analysis is applied to illustrate the impact of economic activities on forest areas. The data used in the study consist of deforestation rates in Indonesia from 2000 to 2021. The findings indicate that the rate of economic activity in forested areas is directly proportional to the reduction in forest area. If the rate of deforestation due to economic activity approaches the forest growth rate, the likelihood of forest area reduction increases, and forest depletion will occur if the two rates become equal. To resolve the dilemma between forest conservation and economic growth, this study proposes a solution consisting of three key steps: (1) establishing a minimum forest area that is strictly protected from economic exploitation; (2) setting the ratio between forest growth rates and economic activity rates as a primary foundation for ensuring sustainable forest conservation and economic development; and (3) calculating environmental costs, such as reforestation, based on the proportional relationship between deforestation rates and forest growth rates.
Keywords: Deforestation, Environmental Cost, Economy, Forest, Growth Rate
Downloads
References
Adkins, E., Oppelstrup, K., & Modi, V. (2012). Rural household energy consumption in the millennium villages in Sub-Saharan Africa. Energy for Sustainable Development, 16(3), 249–259. https://doi.org/10.1016/j.esd.2012.04.003.
Ahmed, K., Rehman, M. U., & Ozturk, I. (2017). What drives carbon dioxide emissions in the long-run? Evidence from selected South Asian Countries. Renewable and Sustainable Energy Reviews, 70, 1142–1153. https://doi.org/10.1016/j.rser.2016.12018.
Bacaër, N. (2011). A short history of mathematical population dynamics. A Short History of Mathematical Population Dynamics, 1838, 1–160. https://doi.org/10.1007/978-0-85729-115-8.
Begum, R. A., Sohag, K., Abdullah, S. M. S., & Jaafar, M. (2015). CO2 emissions, energy consumption, economic and population growth in Malaysia. Renewable and Sustainable Energy Reviews, 41, 594–601. https://doi.org/10.1016/j.rser.2014.07.205.
Brauer, F., & Castillo-Chavez, C. (2012). Mathematical models in population biology and epidemiology: Second edition. New York: Springer-Verlag.
Caravaggio, N. (2020). Economic growth and the forest development path: A theoretical re-assessment of the environmental Kuznets curve for deforestation. Forest Policy and Economics, 118(4), 102259. https://doi.org/10.1016/j.forpol.2020.102259.
Clerici, N., Cote-Navarro, F., Escobedo, F. J., Rubiano, K., & Villegas, J. C. (2019). Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Science of the Total Environment, 685, 1181–1192. https://doi.org/10.1016/j.scitotenv.2019.06.275.
Creed, I. F., Weber, M., Accatino, F., & Kreutzweiser, D. P. (2016). Managing forests for water in the anthropocene-The best kept secret services of forest ecosystems. Forests, 7(3), 60. https://doi.org/10.3390/f7030060.
Cropper, M., & Griffiths, C. (1994). The interaction of population growth and environmental quality. American Economic Review, 84(2), 250–254.
DeFries, R. S., Rudel, T., Uriarte, M., & Hansen, M. (2010). Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nature Geoscience, 3(3), 178–181. https://doi.org/10.1038/ngeo756.
FAO. (2018). Global forest resources assessment 2020.
FAO. (2020). The state of the world’s forest: Forest, biodiversity and people. FAO of the United Nations.
Geist, H. J., & Lambin, E. F. (2001). What drives tropical deforestation?: A meta-analysis of proximate and underlying causes of deforestation based on subnational case study evidence. Belgium: LUCC International Project Office.
Giljum, S., Maus, V., Kuschnig, N., Luckeneder, S., Tost, M., Sonter, L. J., & Bebbington, A. J. (2022). A pantropical assessment of deforestation caused by industrial mining. Proceedings of the National Academy of Sciences, 119(38). https://doi.org/10.1073/pnas.2118273119.
Gordon, S. H. (1991). The economic theory of a common-property resource: The fishery. Bulletin of Mathematical Biology, 53(1–2), 231–252. https://doi.org/10.1016/S0092-8240(05)80048-5.
Hao, Y., Xu, Y., Zhang, J., Hu, X., Huang, J., Chang, C.-P., & Guo, Y. (2019). Relationship between forest resources and economic growth: Empirical evidence from China. Journal of Cleaner Production, 214, 848–859. https://doi.org/10.1016/j.jclepro.2018.12.314.
Henders, S., Persson, U. M., & Kastner, T. (2015). Trading forests: Land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environmental Research Letters, 10(12), 125012. https://doi.org/10.1088/1748-9326/10/12/125012.
Hou, Y., Wei, X., Zhang, M., Creed, I. F., McNulty, S. G., & Ferraz, S. F. B. (2023). A global synthesis of hydrological sensitivities to deforestation and forestation. Forest Ecology and Management, 529, 120718. https://doi.org/10.1016/j.foreco.2022.120718.
Iiyama, M., Neufeldt, H., Njenga, M., Derero, A., Ndegwa, G. M., Mukuralinda, A., Dobie, P., Jamnadass, R., & Mowo, J. (2017). Conceptual analysis: The charcoal-agriculture nexus to understand the socio-ecological contexts underlying varied sustainability outcomes in African Landscapes. Frontiers in Environmental Science, 5(31). https://doi.org/10.3389/fenvs.2017.00031.
Kastner, T., Erb, K. H., & Haberl, H. (2014). Rapid growth in agricultural trade: Effects on global area efficiency and the role of management. Environmental Research Letters, 9(3). https://doi.org/10.1088/1748-9326/9/3/034015.
Kastner, T., Erb, K. H., & Nonhebel, S. (2011). International wood trade and forest change: A global analysis. Global Environmental Change, 21(3), 947–956. https://doi.org/10.1016/j.gloenvcha.2011.05.003.
KLHK. (2022). The state of Indonesia’s forests 2022; Toward FOLU net sink 2030. Jakarta: Ministry of Environment and Forestry, Republic of Indonesia.
Lewis, S. L., Edwards, D. P., & Galbraith, D. (2015). Increasing human dominance of tropical forests. Science, 349(6250), 827–832. https://doi.org/10.1126/science.aaa9932.
Liu, N., Caldwell, P. V., Dobbs, G. R., Miniat, C. F., Bolstad, P. V., Nelson, S. A. C., & Sun, G. (2021). Forested lands dominate drinking water supply in the conterminous United States. Environmental Research Letters, 16(8). https://doi.org/10.1088/1748-9326/ac09b0.
Maxwell, S. L., Fuller, R. A., Brooks, T. M., & Watson, J. E. M. (2016). Biodiversity: The ravages of guns, nets and bulldozers. Nature, 536(7615), 143–145. https://doi.org/10.1038/536143a.
Pelletier, J., Ngoma, H., Mason, N. M., & Barrett, C. B. (2020). Does smallholder maize intensification reduce deforestation? Evidence from Zambia. Global Environmental Change, 63, 102127. https://doi.org/10.1016/j.gloenvcha.2020.102127.
Pendrill, F., Persson, U. M., Godar, J., Kastner, T., Moran, D., Schmidt, S., & Wood, R. (2019). Agricultural and forestry trade drives large share of tropical deforestation emissions. Global Environmental Change, 56, 1–10. https://doi.org/10.1016/j.gloenvcha.2019.03.002.
Schaefer, M. B. (1954). Some aspects of the dynamics of populations, important for the management the commercial marine fisheries. Inter-American Tropical Tuna Commission, 1(2), 23–56.
Seijo, J. C., Defeo, O., & Salas, S. (1998). Fisheries bioeconomics: Theory, modelling and management. Rome: FAO Fisheries Technical Paper.
Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., Ravindranath, N. H., Rice, C. W., Abad, C. R., Ramanovskya, A., Sperling, F., Tubiello, F. N., & Bolwig, S. (2015). Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assesment Report (pp. 811-922) (pp. 811–922). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781107415416.017.
Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., Summerhayes, C. P., Barnosky, A. D., Cornell, S. E., Crucifix, M., Donges, J. F., Fetzer, I., Lade, S. J., Scheffer, M., Winkelmann, R., & Schellnhuber, H. J. (2018). Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences, 115(33), 8252–8259. https://doi.org/10.1073/pnas.1810141115.
Tilman, D., Clark, M., Williams, D. R., Kimmel, K., Polasky, S., & Packer, C. (2017). Future threats to biodiversity and pathways to their prevention. Nature, 546(7656), 73–81. https://doi.org/10.1038/nature22900.
Woldemedhin, D. G., Assefa, E., & Seyoum, A. (2022). Forest covers, energy use, and economic growth nexus in the tropics: A case of Ethiopia. Trees, Forests and People, 8(April), 100266. https://doi.org/10.1016/j.tfp.2022.100266.
Zhang, M., & Wei, X. (2021). Deforestation, forestation, and water supply. Science, 371(6533), 990–991. https://doi.org/10.1126/science.abe7821.
Copyright (c) 2024 Sri Wahyuni Jamal, Suparno Suparno, Sofia Ulfa Eka Hadiyanti, Dian Sadidah, Mutiara Dewi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.